Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pain ; 18: 17448069221089596, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35266830

RESUMO

Calcium-dependent, neuronal adenylyl cyclase subtype 1 (AC1) is critical for cortical potentiation and chronic pain. NB001 is a first-in-class drug acting as a selective inhibitor against AC1. The present study delineated the pharmacokinetic (PK) properties of human-used NB001 (hNB001) formulated as immediate-release tablet. This first-in-human (FIH) study was designed as randomized, double-blind, placebo-controlled trial. hNB001 showed placebo-like safety and good tolerability in healthy volunteers. A linear dose-exposure relationship was demonstrated at doses between 20 mg and 400 mg. The relatively small systemic exposure of hNB001 in human showed low bioavailability of this compound through oral administration, which can be improved through future dosage research. Food intake had minimal impact on the absorption of hNB001 tablet. Animal experiments further confirmed that hNB001 had strong analgesic effect in animal models of neuropathic pain. In brain slice prepared from the anterior cingulate cortex (ACC), bath application of hNB001 blocked the induction of long-term potentiation (LTP). These results from both rodents and human strongly suggest that hNB001 can be safely used for the future treatment of different types of chronic pain in human patients.


Assuntos
Trifosfato de Adenosina , Inibidores de Adenilil Ciclases , Adenilil Ciclases , Dor Crônica , Neuralgia , Trifosfato de Adenosina/administração & dosagem , Trifosfato de Adenosina/efeitos adversos , Trifosfato de Adenosina/análogos & derivados , Inibidores de Adenilil Ciclases/administração & dosagem , Inibidores de Adenilil Ciclases/efeitos adversos , Adenilil Ciclases/metabolismo , Dor Crônica/tratamento farmacológico , Dor Crônica/enzimologia , Giro do Cíngulo/metabolismo , Humanos , Neuralgia/tratamento farmacológico , Neuralgia/enzimologia
2.
Pflugers Arch ; 470(6): 923-935, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29453615

RESUMO

Sympathetic activation causes clinically important arrhythmias including atrial fibrillation (AF) and ventricular tachyarrhythmia. Although the usefulness of ß-adrenergic receptor blockade therapy is widely accepted, its multiple critical side effects often prevent its initiation or continuation. The aim of this study is to determine the advantages of vidarabine, an adenylyl cyclase (AC)-targeted anti-sympathetic agent, as an alternative treatment for arrhythmia. We found that vidarabine, which we identified as a cardiac AC inhibitor, consistently shortens AF duration and reduces the incidence of sympathetic activation-induced ventricular arrhythmias. In atrial and ventricular myocytes, vidarabine inhibits adrenergic receptor stimulation-induced RyR2 phosphorylation, sarcoplasmic reticulum (SR) Ca2+ leakage, and spontaneous Ca2+ release from SR, the last of which has been considered as a potential arrhythmogenic trigger. Moreover, vidarabine also inhibits sympathetic activation-induced reactive oxygen species (ROS) production in cardiac myocytes. The pivotal role of vidarabine's inhibitory effect on ROS production with regard to its anti-arrhythmic property has also been implied in animal studies. In addition, as expected, vidarabine exerts an inhibitory effect on AC function, which is more potent in the heart than elsewhere. Indexes of cardiac function including ejection fraction and heart rate were not affected by a dosage of vidarabine sufficient to exert an anti-arrhythmic effect. These findings suggest that vidarabine inhibits catecholamine-induced AF or ventricular arrhythmia without deteriorating cardiac function in mice.


Assuntos
Inibidores de Adenilil Ciclases/farmacologia , Antiarrítmicos/farmacologia , Antivirais/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Coração/efeitos dos fármacos , Vidarabina/farmacologia , Inibidores de Adenilil Ciclases/efeitos adversos , Inibidores de Adenilil Ciclases/uso terapêutico , Animais , Antiarrítmicos/efeitos adversos , Antiarrítmicos/uso terapêutico , Antivirais/efeitos adversos , Antivirais/uso terapêutico , Arritmias Cardíacas/etiologia , Sinalização do Cálcio , Catecolaminas/toxicidade , Herpesviridae/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Vidarabina/efeitos adversos , Vidarabina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...